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We construct a simple model which describes the lattice dynamics of a single-wall boron nitride nanotube.
The model includes short-range interactions between nearest and second-nearest neighbors as well as long-
range Coulomb interactions between polar atoms. It is clearly shown that flexure modes exist in boron nitride
nanotubes consisting of polar atoms. We also find that the frequency of the radial breathing mode is inversely
proportional to the tube radius R and that the lowest optical mode displays the radius dependence of 1 /R2

consistent with earlier calculations.
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I. INTRODUCTION

The discovery of a carbon nanotube �CNT� �Ref. 1� initi-
ated extensive studies on the nanotube structures for a vari-
ety of applications in nanotechnology.2–5 Although CNT has
been the most popular nanotube structure in the studies, there
have been many other structural analogs of a CNT. One im-
portant analog is a boron nitride nanotube �BNNT�.

Shortly after a BNNT was predicted to exist by the tight-
binding calculation6 and the ab initio calculation,7 BNNTs
were first synthesized8 and have been produced by several
methods in the forms of both single-wall and multiwall
nanotubes.5 The striking difference between BNNTs and
CNTs is that BNNTs are always semiconducting9 with wide
band gap �5.5 eV, while CNTs are semiconducting or me-
tallic depending on their chirality. Further, the fact that boron
nitride layers are more stable than graphatic carbon structure
leads to the expectation of better structural properties of
BNNTs. Such peculiar properties of BNNTs motivated recent
studies on various possible applications such as gas adsorp-
tion nanostructures10 and electrical nanocables.11

The Raman and the infrared spectroscopies have proved
to provide an effective way for the characterization of nano-
tube samples, which requires accurate predictions of lattice
vibrational modes in nanotubes. For CNTs, there have been a
number of theoretical studies on the phonon spectra.12–30 Par-
ticularly, the radial breathing mode is useful in identifying
carbon nanotubes experimentally since the mode is strongly
dependent on the tube diameter.27–30

The existence of flexure modes has been another interest-
ing issue in the lattice dynamics of CNTs. The approaches
based on elastic theory31,32 predicted that four low-frequency
modes exist in CNTs; two of them are longitudinal-acoustic
and torsional modes, which are proportional to the wave
number q along the tube axis, while the other two are flexure
modes which exhibit quadratic dependence on q. On the
other hand, many calculations12–16 concluded that all four
low-frequency modes are acoustical. Some refined
calculations23–26 recovered flexure modes, which was con-
firmed in recent molecular-dynamic calculations of heat con-
duction in CNTs.33

The lattice vibrations in BNNTs have also been studied in
several ways such as a tight-binding model,34 a valence-shell

model,35 and an ab initio calculation.36 All the calculations
produced the same general properties: the high-frequency
modes around 1370 cm−1 which are consistent with Raman
observations,37,38 the radial breathing modes which are in-
versely proportional to the tube radius, and four low-
frequency modes. The last two properties are similar to those
of CNTs. An interesting thing is that none of them observed
clearly flexure modes, which are believed to be the general
properties of a cylindrical geometry.31,32

The main purpose of this work is to devise a simple
model which can describe well the lattice dynamics of
BNNTs. The essential ingredient of the model is the inclu-
sion of Coulomb interactions between the atoms since
BNNTs are polar materials. In our model, we incorporate
short-range interactions between the first- and the second-
nearest neighbors as well as long-range Coulomb interac-
tions. Within the model, we construct the dynamical equation
for the displacements of atoms, calculating the phonon spec-
trum of BNNTs. It describes correctly low-frequency
phonons; the quadratic dependence of flexure modes on the
wave number is demonstrated. The frequency of the radial
breathing mode is shown to be vL /R, where vL is the velocity
of the longitudinal-acoustical phonon and R is the tube ra-
dius; this was predicted by the elastic theory.31 It is also
found that the lowest optical phonon exhibits 1 /R2 depen-
dence.

This paper is organized as follows. We describe our model
and present the results for armchair BNNTs in Sec. II. Sec-
tion III is devoted to the results of zigzag BNNTs. A brief
summary is given in Sec. IV and the zero-stress condition
which is crucial in the inclusion of Coulomb interactions is
detailed in the Appendix.

II. ARMCHAIR BORON NITRIDE NANOTUBE

A BNNT is composed of two kinds of atoms: boron �B�
and nitrogen �N�. The main difference of the equilibrium
geometry of BNNT from that of CNT is a buckling of the
boron-nitrogen bond. From the ab initio structural
studies,7,36,39–41 it has been shown that all the B atoms are
arranged in one cylinder while all the N atoms lie in a con-
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centric one of larger radius. Each B atom tends to keep the
planar sp2 bonding geometry.7,36 The buckling distance �the
distance between the inner and the outer cylinders� is smaller
than 0.1 Å for the tube of radius �2.5 Å and decreases
monotonically with the tube radius. In some phonon
calculation,35 such small buckling distance was neglected.

For an armchair BNNT, we take a primitive unit cell,
which has one B atom and one N atom, respectively, at

RB = �RB,0,0� , �1�

RN1 = �RN,�1,0� �2�

in cylindrical coordinates �� ,� ,z�. The B atom has three
nearest neighbors as drawn in Fig. 1. The positions of the
other two N atoms are

RN2 = �RN,− �2,cA� , �3�

RN3 = �RN,− �2,− cA� . �4�

A B atom is assumed to be placed at the center of the equi-
lateral triangle, which is formed by its three neighboring N
atoms �N1, N2, and N3 in Fig. 1�. The bond length of B-N is
given by a=1.44 Å.36,39,40 In achiral nanotubes, we have
B-N bonds of two types: B-N1 and B-N2 �or B-N3� in Fig. 1.
The bond lengths of two types are slightly different. How-
ever, the difference is �0.03 Å even for the smallest stable
nanotubes,39,40 which we neglect in this work.

In this approximation, we obtain the expression for two
radii �RN and RB� for an �N ,N� armchair BNNT,

RN =
3a

4 sin��̃/2�
,

RB = a� 9

16 sin2��̃/2�
−

1

2
, �5�

along with �1+�2= �
N � �̃ and cA=

�3
2 a. It is noted that the

buckling distance RN−RB is inversely proportional to the
tube radius R��RN+RB� /2,

RN − RB =
1

RN + RB

a2

2
�

a2

R
, �6�

which is consistent with an earlier ab initio calculation.36 For
N�1, the buckling distance is given by

RN − RB =
�

6N
a + O	 1

N2
 . �7�

The values of the outer radius RN used in our model are
almost the same as earlier ab initio results,39,40 while the
inner radius RB is slightly underestimated with less than 2%
errors for N�6.

A big unit cell which is a basic block in the z direction
contains 4N atoms and can be constructed from a primitive
cell by two transformations,

T1���,�,z�� = ��,� + �̃,z − cA� , �8�

T2���,�,z�� = ��,� + �̃,z + cA� . �9�

The transformations �T1+T2�n1T 2
n2 with n1=0 , . . . ,N−1 and

n2=0 ,1 map a primitive cell to a big unit cell. The entire
nanotube is obtained by the periodic placement of big unit
cells with period 2cA.

To describe phonons of a BNNT, we consider the dis-
placements QB and QN of atoms in three dimensions. Phonon
states are classified by two wave numbers: q in the z direc-
tion and � in the azimuthal direction.23,24 For an infinitely
long tube, q is a continuous variable in the range
�−� /2cA ,� /2cA�. The azimuthal wave number � takes an
integer satisfying �	N /2. For an even N, �= 
N /2 are
equivalent to each other.

We include both short-range interactions and long-range
Coulomb interactions between polar atoms. Bond-stretching
interactions between nearest-neighbor atoms and between
second-nearest-neighbor atoms are taken into account as
short-range interactions. The two kinds of bond-stretching
interactions are parametrized by its first and second deriva-
tives ��1� ,�1�� and ��2� ,�2��, respectively. The other crucial
interactions are electrostatic interactions between polar at-
oms since a BNNT is a polar material. We include Coulomb
interactions with dielectric constant � among all B atoms
with charge +Ze and N atoms with charge −Ze. The full-
range Coulomb interactions are incorporated in the same
way as used in Ref. 24. The first derivatives of bond-
stretching interactions are restricted by a zero-stress condi-
tion for the equilibrium lattice parameter a.24,42,43 In our
model, we set �2�=0 for simplicity and �1� is determined by
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FIG. 1. Three neighbors of boron atom at site B in armchair
boron nitride nanotubes.
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the strength of Coulomb interactions. The derivation of the
relations is detailed in the Appendix. In Table I we summa-
rize the values of the parameters used in our model, which
are obtained by fitting to ab initio and experimental data on
zone-center optical phonons36–38 in the limit of large tube
radius.

For each pair of �q ,��, we construct the total dynamical
equation in the form,

2	mB 0

0 mN

	QB

QN

 = D̂�q,��	QB

QN

 , �10�

where QB and QN are the displacements of B and N atoms in
a primitive cell and all the interactions are contained in a

dynamical matrix D̂�q ,��. The above equations can be writ-
ten as

2	QB�

QN�

 = M−1/2D�q,��M−1/2	QB�

QN�

 , �11�

with

M−1/2 � 	mB
−1/2 0

0 mN
−1/2 
 �12�

and

	QB�

QN�

 � 	mB

1/2QB

mN
1/2QN


 . �13�

We solve the secular equation,

det�21 − M−1/2D�q,��M−1/2� = 0 �14�

to obtain the phonon frequencies n�q ,�� of a BNNT with a
band index n=1,2 , . . . ,6.

The full phonon dispersion is displayed in Fig. 2�a� for a
�10,10� armchair BNNT. Four optical phonons of �=0 are at
the frequencies 180, 840, 1368, and 1375 cm−1. The first
phonon of frequency 180 cm−1 is a radial breathing mode.
The second phonon of frequency 840 cm−1 is a tube version
of the out-of-plane optical phonon in a BN flat sheet,
whereas the other two modes correspond to longitudinal and
transverse in-plane optical phonons of a BN flat sheet, re-
spectively. The low-frequency mode of �=2 is at 6.1 cm−1.

The larger-scale presentation of low-frequency behavior
in Fig. 2�b� demonstrates four gapless mode at q=0: two
degenerate transverse modes for �= 
1, longitudinal, and
torsional phonons. The latter two phonons are acoustic ex-
hibiting linear dependence on the wave number q for small

wave numbers. The velocities of the two acoustic phonons
are vL�20 km /s and vT�11 km /s, which is in good agree-
ment with earlier works.34

The behavior of the transverse modes with �= 
1 is in-
teresting. In earlier studies,34–36 it was unclear whether the
transverse modes exhibit linear or quadratic dependence on
the wave number. The valence-shell model35 showed a linear
dependence on the wave number. Tight-binding calculation34

TABLE I. Parameters employed in our model for boron nitride
nanotubes. The first derivatives of bond-stretching interactions �1�
and �2� are given by a zero-stress condition. For simplicity, we set
�2�=0.

�1�
�104 dyn cm−1�

�2�
�104 dyn cm−1� Z2 /�
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FIG. 2. �a� Phonons in a �10,10� armchair BNNT. �b� Larger-
scale presentation of the region at low frequency and small wave
vector.
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could not clarify the issue due to the numerical accuracy,
which was not clearly resolved in the ab initio calculation.36

The log-log plot in Fig. 3 demonstrates the clear quadratic
dependence of the mode on q at small wave numbers; this
indicates the existence of flexure modes in an armchair
BNNT consistent with the elastic theory.31,32

We also compute the dependence of the frequency of a
radial breathing mode as a function of the tube radius R. As
is shown in Fig. 4, it is inversely proportional to R consistent
with earlier results.34–36 The best fit is A�R /R0�−� with R0
�1 Å, A=1230
2 cm−1, and �=0.9956
0.0004. The

proportional constant A is comparable to—but slightly larger
than—earlier theoretical estimations for BNNT, 850–1100
from various approaches such as the tight-binding model,34

the valence shell model,35 and the ab initio calculations.36,41

Indeed the phonon frequencies of the radial breathing modes
are in good agreement with the behavior vL /R, which was
shown in the elastic theory.31 The dependence of the low-
frequency mode with �=2 on the tube radius R is also inter-
esting. Unlike the radial breathing mode, it exhibits a de-
crease roughly proportional to 1 /R2 as shown in Fig. 5; this
reproduces the ab initio results.19,36

III. ZIGZAG CARBON NANOTUBE

In this section, we study �N ,0� zigzag nanotubes within
the same model. In a primitive unit cell of an �N ,0� zigzag
BNNT, we have two atoms at

RB = �RB,0,0� , �15�

RN1 = �RN,0,
2

3
cZ� . �16�

The positions of the other two N atoms nearest to the B atom
are

RN2 = �RN,−
�Z

2
,−

1

3
cZ� , �17�

RN3 = �RN,
�Z

2
,−

1

3
cZ� . �18�

From the assumption that B atom is placed at the center of
three N atoms �N1, N2, and N3�, one can obtain for an �N ,0�
zigzag BNNT

qcA

ω
fl

(c
m

−1
)

10.10.01

1000

100

10

1

0.1

FIG. 3. The log-log plot of the frequency of a flexure mode with
�=1 versus the wave number q. It clearly exhibits a quadratic de-
pendence of the frequency on the wave number q for small q. The
dashed line is a guide for q2 dependence.
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FIG. 4. The frequency of a radial breathing mode as a function
of radius for armchair BNNT. The dashed line is a fitting curve
f�R�=A�R /R0�−� with R0�1 Å, A=1230
2 cm−1, and �
=0.995 6
0.000 4. The inset shows the log-log plot of the fre-
quency of a radial breathing mode.
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FIG. 5. The frequency of the low-frequency mode with �=2 as
a function of radius for armchair BNNT. The dashed line is a fitting
curve f�R�=A�R /R0�−� with R0�1 Å, A=309
3 cm−1, and �
=2.04
0.01.

GUN SANG JEON AND G. D. MAHAN PHYSICAL REVIEW B 79, 085424 �2009�

085424-4



�Z =
2�

N
, �19�

RN =
�3a

2 sin��Z/2�
, �20�

RB =
1

3
RN	1 + 2 cos

�Z

2

 , �21�

cZ =
3

2
a�1 −

�1 − cos��Z/2��2

3 sin2��Z/2�
. �22�

The deviation of cZ from 3a /2 due to the buckling is less
than 1% for N�5.

It is also convenient to construct a big unit cell from a
primitive cell for a zigzag BNNT. Applying the transforma-
tions T 1

n1T 2
n2 with n1=0 ,1, n2=0 , . . . ,N−1, and

T1���,�,z�� = ��,� + �z,z� , �23�

T2���,�,z�� = ��,� + �z/2,z + cZ� , �24�

we can map a primitive cell onto a big unit cell composed of
4N atoms.

We employ the same parameters as in armchair nanotubes
and compute the phonon dispersion for a �17,0� zigzag
BNNT. The full and low-frequency phonon spectrum is
shown in Figs. 6�a� and 6�b�. The optical phonons of �=0
are at the frequencies 184, 840, 1368, and 1375 cm−1. At
low frequencies, we also find two acoustic modes and two
�degenerate� flexure modes at small wave vector q. The ve-
locities of the two acoustic phonons are vT�11 km /s and
vL�20 km /s, and flexure modes exhibit a quadratic depen-
dence on q. The low-frequency mode of �=2 is at 6.3 cm−1.
The frequency RBM of the radial breathing mode for �N ,0�
zigzag nanotubes displays the same behavior �1 /R as in
armchair tubes. The best fit to the function f�R�
=A�R /R0�−� �R0�1 Å� is obtained with A=1231
2 cm−1

and �=0.995 9
0.000 3. In fact, both curves of radial
breathing mode frequency versus a tube radius for armchair
and zigzag BNNTs are almost overlapped as reported
earlier.34,35

IV. SUMMARY

We have studied the lattice dynamics of a single-wall bo-
ron nitride nanotube, paying particular attention to the low-
frequency modes. We have devised a simple model which
incorporated short-range interactions between first- and
second-nearest-neighbor atoms as well as long-range Cou-
lomb interactions between polar atoms. Our model has
proved to describe correctly the behavior of flexure modes
which are transverse gapless modes of the nanotube and dis-
play quadratic dependence on the wave number for small
wave numbers. We also reproduced the radius dependence of
the radial breathing mode and the lowest optical phonon with
�=2.
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APPENDIX

In this appendix, we derive the expression for �1��a� from
the zero-stress condition. The total energy of an entire tube is
given by
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FIG. 6. �a� Phonons in a �17,0� zigzag BNNT. �b� Larger-scale
presentation of the region at low frequency and small wave vector.
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E�a� =
1

2 �
���

��1�r� − r�� +
e2Z�Z�

�r� − r�� , �A1�

where � and � are the indices of atoms in an entire nanotube
and r� and Z� denote the equilibrium position and the charge
of atom �, respectively. �1 is a bond-stretching force be-
tween the first-nearest-neighbor atoms. For simplicity, we
neglect the change in all other energies due to the variation
of a. The expression for the total energy can be simplified as

E�a� =
1

2
Nz�12N�1�a� +

e2

�
�
i,j

ZiZjV̄ij�a�� , �A2�

where

V̄ij�a� � � �
n=−�

�
eiq2nc

��ij
2 + �zij − 2nc�2�

q→0

�A3�

with �ij
2 =�i

2+� j
2−2�i� j cos��i−� j� and zij �zi−zj. Nz is the

number of big unit cells in a BNNT and the summation of i
and j runs over the atoms in a big unit cell of 4N atoms for
�N ,N� armchair or �N ,0� zigzag BNNT.

From the zero-stress condition dE�a� /da=0 for equilib-
rium geometry, one can obtain

�1��a� = −
e2

12N
�
i,j

ZiZj
dV̄ij

da
= −

e2

6 �
b

Zb�
j

Zj
dV̄ij

da
,

�A4�

where the summation b runs over the atoms in a primitive
cell. �Note that �i=2N�b.� It is straightforward to calculate

the derivative of pair Coulomb interaction with respect to a.
For i= j,

dV̄ij

da
=

1

ac
�ln�2qc� − 1� . �A5�

For �ij =0 and zij�0,

dV̄ij

da
=

1

2ac
�2� + �0	1 −

zij

2c

 + �0	1 +

zij

2c

 −

2c

zij

+ 2 ln�2qc� − 2� . �A6�

For �ij�0,

dV̄ij

da
=

1

ac
�ln	q�ij

2

 + � − 1�

−
2

ac
�
m=1

�

cos	�mzij

c

K0	�m�ij

c

 . �A7�

Here � is the Euler-Mascheroni constant and �0�x� is a di-
gamma function. The limit q→0 is assumed, and the diver-
gent terms �ln�qa� are canceled by the charge-neutrality
condition �izi=0.
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